Comment on “Two-dimensional third-and fifth-order nonlinear evolution equations for shallow water waves with surface tension” [Nonlinear Dyn, doi:10.1007/s11071-017-3938-7]

نویسندگان

چکیده

The authors of the paper "Two-dimensional third- and fifth-order nonlinear evolution equations for shallow water waves with surface tension" \cite{Fok} claim that they derived equation which generalizes KdV to two space dimensions both in first second order small parameters. Moreover, obtain soliton solution (2+1)-dimension equation. has been obtained by applying perturbation method \cite{burde} parameters same order. results, if correct, would be significant. In this comment, it is shown derivation presented inconsistent because violates fundamental properties velocity potential. Therefore, particularly new dynamics describes, bear no relation problem under consideration.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Shock Waves and Compactons for Fifth-order Nonlinear Dispersion Equations

The following question is posed: to justify that the standing shock wave S−(x) = −signx = − { −1 for x < 0, 1 for x > 0, is a correct “entropy” solution of fifth-order nonlinear dispersion equations (NDEs), ut = −(uux)xxxx and ut = −(uuxxxx)x in R × R+. These two quasilinear degenerate PDEs are chosen as typical representatives, so other similar (2m+ 1)th-order NDEs with no divergence structure...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2021

ISSN: ['1573-269X', '0924-090X']

DOI: https://doi.org/10.1007/s11071-021-06716-5